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ABSTRACT

This is a continuation of a series of papers on the digital
geometry of three-dimensional digital images. In earlier reports,
D. Morgenthaler and A. Rosenfeld gave symmetric definitions for
simple surface points under the concepts of 6-connectivity and
26-connectivity, and they non-trivially characterized a simple
closed surface (i.e., a subset of the image which separates its
complement into an 'inside" and an woutside") as a connected col-
lection of "orientable" simple surface points. Later, the author
and A. Rosenfeld established that the computationally costly assump-
tion of orientability is unnecessary for 6-connectivity by proving
that orientability, a local property, is implicitly guaranteed with-
in the (3x3x3)-neighborhood definition of a 6-connected simple sur-
face point. However, they also showed that no such guarantee
exists for 26-connectivity. In this report, the author completes
this investigation of simple closed surfaces by showing that ori-
entability is ensured globally by 26-connectivity. Hence, a simple
closed surface may be efficiently charactered as a connected col-
lection of simple surface points regardless of the type of connec-
tivity in consideration. /
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1. Introduction

Geometrical and topological characterizations of subsets

of digital pictures play an important role in computer image

analysis and pattern recognition [1]. Topological concepts

such as connectedness and simple closed curves are well-under-

stood in two-dimensional arrays [21 and have proven to be use-

ful tools for a wide variety of image analysis tasks such as

object extraction, thinning, and skeletonization.

With the increased interest in computed tomography and the

three-dimensional representation of microscopic cross-sections

and time sequences of images, it has now become desirable to

develop a consistent and efficient theory for the understanding

of geometric and topological properties of subsets of three-

dimensional digital arrays. Early work in this area was done

by Gray [3] and Park [4], and other authors [5,6] have considered

generalizations of specific two-dimensional results to higher

dimensions. However, the current series of papers on three-

dimensional digital geometry written at the Computer Vision

Laboratory of the University of Maryland ([7],[5],[9],[l0],[ll],

[12],[13]) appears to be the first systematic study designed to

develop the desired theory. This report is the latest in this

series, and it completes the characterization of simple closed

surfaces.

Simple surface points and simple closed surfaces were in-

troduced in [10] to. establish the three-dimensional analog of

the two-dimensional Jordan Curve Theorem. The goal was to
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define computationally efficient properties such that a

subset of the 3D-lattice satisfying those properties

separated the complement of that subset into an "inside"

and an "outside." Indeed, this goal was to a large ex-

tent achieved in [10] where it was shown that a connected

collection of "orientable" simple surface points provided

the desired characterization. Unresolved, however, was

the necessity of orientability, a property that unlike the

other components of the characterization required the com-

putationally costly examination of the (5x5x5) neighborhoods

of the points under consideration. In [13], it was shown

that orientability was actually guaranteed by the (3x3x3)-

neighborhood restrctions imposed locally by simple surface

points under 6-connectivity (one of the two types of connec-

tedness to be considered). However, it was also shown in

[13] that no such guarantee was imposed locally under 26-con-

nectivity. In this paper, we succeed in showing that orien-

tability is imposed globally by a 26-connected set of simple

surface points. Hence, the desired characterization, which

requires only the examination of (3x3x3)-neighborhoodsis

etablished under both types of connectivity.

The approach to the characterization of surface proper-

ties in this paper and others in this series where surfaces

are considered to be sets of voxels should be contrasted with

that of Artzy, Frieder, and Herman [14] and Herman and Webster

[15] in which surfaces are considered to be faces of voxels.

The two approaches are complementary.



-- ----. ..--

2. Connectivity and simple closed surfaces

Let Z denote a 3D array of lattice points, which, without

loss of generality, we may assume to be defined by integer

valued triples of Cartesian coordinates (x,y,z). We consider

two types of neighbors of a point p = (xp ypZp)EE:

i) the neighbors (u,v,w) such that IXp-UI+Iyp~VJ+JZp-W I  1

(ii) the neighbors (u,v,w) such that max{Ix p-u,lyp-vl,lz p-wl} = 1

We refer to the neighbors of type (i) as 6-neighbors of p (the

face neighbors) and to the neighbors of type (ii) as 26-neighbors

of p (the face, edge, and corner neighbors). The 6-neighbors are

said to be 6-adjacent to p, and the 26-neighbors are said to be

26-adjacent to p. The statement that a is a path from point p

to point q in Z means that there exists a positive integer n

such that where p=p, p=q and pi is adjacent

to Pi-i for li'n. The terms 6-path and 26-path are utilized

depending on the type of adjacency under consideration.

Let S denote a non-empty subset of Z which, without loss of

generality, we may assume does not meet the border of E. The

points p and q of S are said to be connected in S provided there

is a path from p to q which is contained in S. Connectivity is

an equivalence relation, and the classes under this relation are

called components. Again, the terms 6-connectivity, 26-connectivity,

6-components, and 26-components are utilized depending on the

type of path under consideration.



Similarly, we can consider the components of the comple-

ment S of S. Exactly one of these components contains the

border of E; this component is called the background of S.

All other components of S, if any, are called cavities in

S. As is the custom in 2D (and 3D) digital geometry, oppo-

site types of connectivity are assumed for S and S to avoid

ambiguous situations. Finally, let p be a point of S. We

let N27 (p) denote the 27 points in the (3x3x3) neighborhood

of p, and we let NI25 (p) denote the 125 points in the (5x5x5)

neighborhood centered at p.

Surfaces

In [10], the above structure on the 3D-lattice was uti-

lized to introduce the concept of a simple closed surface in

providing a non-trivial 3D analog of the 2D Jordan Curve

Theorem.

A point pES is a simple surface point provided:

(i) SnN 2 7 (p) has exactly one component adjacent to p (in

the S sense); denote this component Ap

(ii) SfN 2 7 (p) has exactly two components, C1 and C 2 , adja-

cent to p (in the " sense).

(iii) If qES and q is adjacent to p (in the S sense) q is

adjacent (in the S sense) to both C1 and C2.

As observed in [101, there are at most two components of

S-N1 2 5 (p) adjacent (in the S sense) to a simple surface point

p. Thus, suppose that p is a simple surface point of S and
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that each element of A is also a simple surface point ofP

S (i.e., p is not near an "edge"). When SnN 25(p) has two

components adjacent to p, (the surface at) p is said to

be orientable and Ap is called a disk. When SON 12 5 (p) has

only one component adjacent to p, (the surface at) p is

said to be non-orientable and Ap is called a cross-cap.

Theorem 0.1 [10] If S is a connected collection of orientable

simple surface points, then S has exactly one cavity, and S

is said to be a simple closed surface.

Theorem 0.2 [13] There does not exist a 6-connected cross-

cap. That is, if S is a 6-connected subset of Z and p is a

simple surface point in S such that each element of A is alsoP

a simple surface point of S, then N1 2 5 (p)nS has two components

26-adjacent to p and hence p is orientable.

Thus, the computationally costly assumption of orienta-

bility in Theorem 0.1 is unnecessary for 6-connectivity. How-

ever, the following example shows that the situation is more

complex with respect to 26-connectivity.

Example 0.1 [131 There exists a 26-connected cross-cap. The

following set S (of "l's") is 26-connected, the central point

p in the third plane is a simple surface point of S and each

element of Ap is also a simple surface point of p, yet N1 25 (p)n

has only one component 6-adjacent to p and hence p is not ori-

entable.

-m --- - - -- -- .- a--- -- - - - -
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3. 26-connected simple closed surfaces

To show that orientability is not necessary in the charac-

terization of 26-connected simple closed surfaces, let us first

outline the proof of Theorem 0.1 given in [10]. Suppose S is

a 26-connected collection of [orientable], simple surface

points.

(1) For each p = (xp,ypzp)ES, let Hp = {(x,y,z)EZ Ix=xp

yy p, and zz p}, the vertical half-line emanating up-

ward from p.

(2) Suppose pES and a p1 ,P2,... 'pn is a connected path

in S along Hp such that p0 and Pn+l (the points pre-

ceding and following p along H ) are both in S. Con-
p

sider M = U{N 27 (x) I xEa}. If p0 and p,+l are 26-

connected by a path in MnfS, then we say that Hp touches

S in a. If p0 and pn+l are not 26-connected by a path

in MfS, then we say that Hp crosses S in a.

(3) If pES, and Hp crosses S an odd number of times, we

say that p is inside S. If pES, and H crosses S an
p

even number of times, we say that p is outside S.

(4) If p,q(S, let Cp = {A I A* is a component of
p,q pq p,q

Snf(H UHq)}.
pgq

Proposition 1. If p,qES, p is 6-adjacent to q, and A* ECP ,q P,q'

then MnS has two components which are 6-adjacent to each element

of A* where M = U{N 27 (x) I xEA*,q.
Pqq

_____________________. -



Proposition 2. If p,q(S, p is 6-adjacent to q, and A* E
P,q

Cp,q, then H crosses S an odd number of times in A* iffp p,q
Hq crosses S an odd number of times in A*
q p,q

Proposition 3. If p is 6-connected to q in S, then either

both are inside of S or both are outside of S.

Proposition 4. The inside and outside of S are both non-empty

and S has exactly one cavity.

A detailed examination of the above proof shows that the use

of orientability is restricted to establishing Proposition 1,

where it is assumed that for each xEA*,q, NI25 (x)S has two

components which are each 6-adjacent to x. Thus, our goal is

to provide a proof of Proposition 1 without such an assumption.

As in (13], to establish properties.of simple surface points,

in which symmetry between the two types of connectivity fails,

requires considerable combinatorial detail and explicit notation.

Notation. If McZ, let M = MnfS. For each p = (x ,y ,z ), let

p(i,j,k)=(xp+i,yp+j,zp+k). In addition, let p+ denote p(0,0,1)

and p- denote p(0,0,-1).

For k an intoger, let:

k(1) Nkp = {p(i,j,k) -ii1-jl}
p

(2) Nkm 'n = U N andP k--m,n p

(3) Np N Np



For example:

Np N27 (p)

ND2 =the 3x3 plane centered on p(0,0,-2)
p
l 1n-
N nF

p p
Hp {p(O,O,k) I k>0}

Finally, if p,q S, p is 6-adjacent to q, and A* is a com-
p,q

ponent of (H pUHq )fS, then there exist integers n0 and m cuc

that A* = U (A* n{p(o,o,n),q(OO,n)}).
p,q n0 1m p,q

(1) For n0 _:nf-m, let A* (n) = A* q{p(0O0,n),q(0,0,n)}pq p, q
(2) For n0 <_nfm, let B* (n) = {p(O,O,n),q(O,O,n)}.

(3) B* = U B* (n).
p ,q p ,qn=n 0 ,m

Our goal is now to establish that if {p,q}cS, p is 6-adjacent

to q, and A* is a component of (H UH )nS, then M, where
p,q pq

M=UfNx I xEB*,q}, has two components which are each 6-adja-

cent to every element of A*
p,q.

Lemma 1. If p is a simple surface point of S and xEN, ,then x

p-pi6-connected to p inN
is.

0Proof: Suppose not. Then W.L.G., either (1) xENp , (2) x=

p(l,l,l) and p(l,l,0)ES,or (3) x=p(0,l,1) and p(l,l,l)ES.

If (1), then W.L.G. let x=p(l,l,0). Now, {p(l,0,0),

p(0,l,O}cS and either (i) {p(l,l,l), p(l,l,-l)}nS o or (ii)

{p(1,1,1), p(l,l,-i)}cS. If (i), then W.L.G. let p(l,l,1)ES.

But now p cannot be 6-adjacent to two components of Np(III).

# If (ii), then p(1,0,0) cannot be 6-adjacent to two compo-

nents of N which are 6-adjacent to p. #

pJ



If (2), then p+ cannot be 6-adjacent to two components

of Np(1 ,1 ,0)* Hence p+ES, and therefore {p(0,1,1), p(l,0,l)}cS.

Now, N( 0 ,1 1 ) has exactly two components, C1 and C2 , 6-adja-

cent to p(0,1,1). Since p(l,l,l) is 6-adjacent to p(0,1,1),

p(l,l,l) must be in one of C1 and C2, say CI. Now, since

p(l,0,0) cannot be 6-connected to p(0,1,1) in N p(0,1,1) it

can be in neither C1 or C2. Thus p(0,0,1)EC 2 or else p(1,0,1)

could not be 6-adjacent to both C1 and C2. But p is 6-adjacent

to both C1 and C2 in Np(,,1). Therefore, either (i) p(0,1,0)EC I ,

or (ii) p(-I,0,0)EC I. If (i), then p(I,2,O)EC 2 or else p(l,l,0)

could not be 6-adjacent to C2. Thus, {p(0,2,O), p(I,2,1)}IcS or

else C1 would be 6-adjacent to C2. However, now there can be

no 6-path in N p(0,) from p(I,2,O)EC 2 to p(0,1,1). # If

(ii), then p(-l,0,1)ES. Hence, since these must be a 6-path

in Np(0,1 ,1 ) from p(-l,0,0) to p(0,1,1), it follows that p(-l,

1,0)EC I. But p(0,1,0)ES since it cannot be 6-adjacent to two

components of N%(- 1,0,1 )" Thus, p(0,1,0)EC 1 and we again have

case (i). #

If (3), then {p(0,0,l), p(l,0,0)}cS. However, now p can-

not be 6-adjacent to two components of N(11,1)" #

Lemma 2. If p,qES and qEA p, then N UN has two components

each of which is 6-adjacent to both p and q. Equivalently,

the two components of N are not merged by a 6-path in Nq.

p q



Proof: Suppose not. Let C1 and C2 denote the two components

of N , and let Ci and C' denote the two components of Nq.

Now, let M=N qN p. There must exist a 6-path a contained in

Nq/M such that a is 6-adjacent to yIEClNM and to Y2 EC2 NM. Fur-

thermore, q is 6-adjacent to both CIlnM and C2NM. Due to sym-

metry, we can assume W.L.G. that (1) q = p+, (2) q = p(l,l,0),

or (3) q = p(l,l,l).

If (1), it follows that CpNM must also be 6-adjacent to

q. Suppose not. Then p(0,0,2)EC since q must be 6-adjacent

to C' in N Thus, W.L.G., either (i) p(0,1,1)EC 1 and p(l,0,1)E

C2 or (ii) p(0,1,1)EC1 and p(O,-I,I)EC 2. If (i), then

p(l,I,I)ES. But then p(l,1,1) cannot be adjacent to C2 in N2q

without merging Ci and C . # If (ii), then one of p(l,0,1) and

p(-l,0,1) must be in C since there must exist a 6-path in Nq

from p(0,0,2) to p. # Therefore, q is 6-adjacent to each of

CfLM, C2fNM and C'nM. W.L.G., let {p(0,1,1), p(O,-l,l), p(l,0,1)}

contain yI' Y2 and an element of CpNM. Note that {p(l,l,l),

p(l,-l,l)}cS and that some xE{p(-l,l,l), p(-l,0,1), p(-l,l,l)}

must also be in S. Now, a cannot connect p(0,1,1) and p(l,0,1) or

else p(l,l,l) could not be 6-adjacent to two components of Nq.

Similarly, a cannot connect p(O,-1,1) and p(l,0,1) or else

p(l,-l,l) could not be 6-adjacent to two components of N qq

Thus a must connect p(0,1,1) and p(O,-l,l). But then x cannot

be 6-connected to p(l,0,1) in N . (# from which (1) follows).q



If (2), then W.L.G., either (i) p(O,l,O)EC 1 and p(1,0,0)(

C2, (ii) p(O,l,O)EC 1 and p(l,l,l)EC 2, or (iii) p(l,l,-l)EC1,

p(l,l,l)EC 2 1 and {p(O,l,O), p(l,O,O)}cS. If (i), then p is

6-adjacent to only one component of RN . # If (ii), then p(O,l,l)E

S. Hence, p(l,O,O)E_9 since it can be 6-adjacent to only one

component of R 0 1 1 ), However, if p(l,O,O)EC 2 then we have

case (i) again. But if p(l,O,O)EC1,? q can be adjacent to only

one component of .# If (iii), then each point of M not in
p

Nmust be in S and R has only two components. (# from which
p
(2) follows).

If (3), then W.L.G., either (i) p(O,l,O)EC 1 and p(l,O,l)EC 2

or (ii) p(O,l,l)EC 1 and p(l,l,O)EC 2 * In either case, p can

be adjacent to only one component of N q # This completes the

proof.

Lemma 3. If pES, qES§, and q is 6-adjacent to p, then N pUN qhas

two components each of which is 6-adjacent to p.

Proof: Suppose not. W.L.G., let q=p+, let C 1 and C 2 denote

the two components of N with p+EC1,T and let a denote a 6-path

in g2from ylEN 1 l to EN'flC. Then y2 '(l-~)p(-l'l'l),

p(l,-l,l),p(l,l,l)}. W.L.G., let y2=p (1,1,l) and {p(O,1,l),

p(lO'l) }CS.

(There-is no 6-path in N pUN p from p+ to Y2.] Suppose there

is such a path p3, where W.L.G. p is minimal. Then p(l,l,2)EP

and one of p(1,0,2) or p(0,1,2), say p(l,O,2),must be in p be-

tween p+ and Y2. Observe that N P(1 ,0 1 ) np cannot be 6-adjacent



to p+ or else p(O,l,l) could not be 6-adjacent to two compo-

nents of N%(1 ,0,1 )" Hence p(0,0,2)ES. Now, since P must be

6-adjacent to p+, p(l,-l,2)E, p(O,-l,2)EP and p(O,-I,I)ES.

Furthermore, p(l,-I,I)ES since it can be adjacent to only

one component of N p(0,0,2). However, now P must be 6-adjacent

to p+ via p(-l,0,1) which is the only remaining possibility.

But then p+ is 6-adjacent to f1nNp(0,_ll ) and p(l,0,1) cannot

be 6-adjacent to two components of N # Hence,p(-l,0,1)" ene

P+'YI' and Y2 must belong to three distinct components of

Ni. Thus (i) ylE{p(l,-ii), p(-l,l,)} or (ii) yl=p(-l,-l,l).
p

If (i), W.L.G. let yl=p(l,-l,l). Then p(O,-l,l)ES. Also,

since C1 and C2 must be 6-adjacent to p, p(II,0)EC2 and

p(l,-lO)EC 2. However, now p(l,0,0) must be in S and p+ENp(I,0,0)"

But p+ cannot be 6-connected to p(l,0,0) in Np0l,00).#

If (ii), then {p(-l,0,1), p(O,-l,l)}cS. Furthermore, since

p(l,-l,l) cannot be 6-adjacent to two components of N

p(l,-I,1)ES. Now, since each of yl,y 2 , and p(l,-l,l) must be

6-connected to p in N 1 {p(l,l,0), p(l,-1,0), p(-l,-1,0)}cS.

Thus, one of x=p(l,0,0) or x=p(O,-l,0) must be in S or C1 would

be 6-adjacent to C2 in N . However, in either case, we would

have p+EN x but p+ cannot be 6-connected to x in N x.# The proof

is complete.

Lemma 4. If p and q=p(l,0,1) are in S, p+ES, and yE{p(O,-l,2),

p(0,0,2), p(0,1,2)}nS, then y is 6-connected to p via a path

in F "'
2.

p p



Proof: Suppose not. Then y~p(O,O,2), hence W.L.G. let

y=p(O,l,2). Note {p(O,O,2),p(O,l,l)}CS or else y would be

-2
6-adjacent to N pand thus 6-connected to p in N pUN .* Now,

since y must be 6-connected to q in N , p(1,1,2)(-§. Again,

p(1,1,1) must then be in S. However, now p(1,1,1) cannot

be 6-adjacent to two components of N (,,)

Lemma 5. Suppose p and q=p(l,O,-l) are in S and p(O,O,-l)ESg.

If yEfp(-l,l,O),p(-l,O,O),p(-l,-l,O)} and y is 6-connected to

N 2in jii=-21 0 , then there is a 6-path (x in Nf0 UNfp 1 from y
p p pp

t o N'
q

Proof: Suppose not. Note that if y=p(-l,O,O), then one of

p(-1,1,0) or p(-l,-l,O) must be in S.or else p(-l,O,-l)ESg

and y is 6-connected to N via p(-l,O,-l). Hence, W.L.(G.,

let y=p(-l,l,O) which implies that p(O,l,O)ES. Now, either

(1) (Ol-)Sor (2) p(O,l,-l)ES. if (1), then p(-l,l,-l)ES

or else y would be 6-connected to 9 via p(O,l,-l). Hence,

since y is 6-connected to N 2  in 0.2, p(-l,O,O)ES and
p p

again p(-1,0,-l)ES. Now, p(-l,-l,O) must be in 5,and

p(-l,-l,-l) must also be in S.Thus, {p(O,-l,O), p(O,-l,-l)IcS.

However, p(O,O,-1)ENp(,,o but since gES, p(O,O,-l) cannot

be 6-connected to p(O,-l,O) in N (,10*#I(2,te

p(O,O,-l) EN (0,1 ,0). Hence, since fp,q~cS, p(-1,O,.-1)Eg and

one of p(-l,l,-l) and p(-1,0,0) must also be in S. But now

we have a 6-path in N pUN p from y to N q. # This completes

the proof.



Lemma 6. If {p,q}cS, p is 6-adjacent to q, and A* is a
p,q

component of (H pUH q)flS, then MflS, where M=U{N j xEBq},

has two components, C1 and C2, which are each 6-adjacent

to every element of A*
p,q

Proof: W.L.G. q=p(0,0,1) or q=p(l,0,0). If q=p(0,0,1), then

the proof follows immediately by induction on Lemma 2. Thus,

assume q=p(l,0,0). Hence, there exist integers n0 and m such

that A* = U A* (i) where for n <i'--m, A* (i)#'. To
pq i=nom pq 0 p,q

simplify notation, for each no<i<m, let Ai U A* (j),n_<J -p,q
B U B* (j),n0<-

Bi n J<i pq and M i =U{ Nx I xEBi}- Note that B* q(i+l)cM i

0
for each n <i<m. From Lemma 2 and Lemma 3, it follows immedi-

ately that RM has two components which are each 6-adjacentno

00
to each element of Ano We now proceed by induction. Assume

n 0n<m and M has two components, C1 and C2, which are eachno~n~n

6-adjacent to every element of An . [To show: M1 has two
n n+l

components which are each 6-adjacent to every element of An+l.]

Suppose not, then there must exist a 6-path a in U{Nx II xEB* (n+l)}

from ylECIn(U{NO xEB*' (n+1)}) to Y2EC2 N(u{NO I xEB*, (n+l)}).
X p q toyE2 x p q

Due to the geometric symmetries involved, we need only consider

the following four cases:

(1) A* (n) = {p(0,0,n)}, A* (n+l) = (p(O,O,n+l)),
p,q p,q

(2) A* (n) = {p(l,0,n)}, A* (n+l) = {p(O,O,n+l)},
p,q p,q

(3) A* (n) = {p(l,0,n)}, A* (n+l) = {p(O,O,n+l), p(l,0,n+1)},
p,q p,q

(4) A* (n) = {p(O,O,n), p(l,0,n)}.
p,q

. .... Oka*,.

A - -.



(i). (A* (n)={p(0,0,n)}, A* (n+l)={p(0,0,n+l)}). It
p q p,q

follows immediately from Lemma 2 that R, where M=MnUN'(0,0,n+I),

has two components, C and C , each of which is 6-adjacent to

every element of An+l* Furthermore, ClC and C2_C 2 . Hence

we can assume that a is a 6-path, contained in the two right-

of p(1,0,n+l)' which is 6-adjacent to ylEC' and

Y2 EC where {yly 2} is contained in the union of the rightmost

column of Np(0 0,) and the rightmost column of N0(l,l,n+l).
,n p

Note that one of yl and Y2 (say yl) cannot be 6-connected to

Np(0,0,n+l) via a path in Np(l,0,n+l) nNp(2,0,n+l)' or else the

two components of N(0,0,n+l) would be merged by the rightmost

plane of Np(ln+l) in contradiction (by symmetry) to Lemma 3.

However, each of yl and Y2 must be 6-connected to p(0,O,n+l)

by a path in M. Thus, W.L.G. let yl=p(2,l,n+l) which implies

{p(2,l,n+l), p(2,l,n+2), p(2,l,n)}cS and {p(l,l,n+l), p(2,0,n+l),

p(l,l,n), p(2,0,n)}cS.

(i) [p(l,0,n+l)EC ] Since ylECj must be 6-connected to

p(O,O,n) in M, let k denote the greatest integer less

than n such that one of p(l,l,k) and p(2,0,k) is in

S. Then observe that p(l,0,k)ES or else either p(l,l,k+l)

is not 6-adjacent to two components of Np(2,0,kl)

or p(2,0,k+l) is not 6-adjacent to two components

of Np(ll,k+l)" Also, note that if k<isn, p(l,0,i)ES.

To see that this is true, suppose for some k<i<n,

p(l,0,i)ES. Let j be the greatest such i, then

p(1,0,j+l)ES and {p(l,l,j+l), p(2,0,j+l), p(l,0,j),

p(2,0,j)})cS. But now p(2,0,j) cannot be 6-adjacent

to two components of Np(l,I,j+l)" # Hence, it follows

&goo



that p(l,O,k+l)E'g and p(l,0,k+l) is 6-connected

to p(l,0,n+l) in M. Now, p(l,0,k+l) and p(2,l,k+l)

are in opposite components of N_ ( or else one

of p(l,l,k+l) and p(2,0,k4l) could not be 6-adjacent

to two components of N P(i,n,k)' Thus, since p(1,0,

k)E nan Np(l, 0, k) CMI p(l,0,k+l) and p(2,l,k+l) are

in opposite components of M.Hence, since p(l,0,n+l)

is 6-connected to p(l,O,k+l) in M_ and y1 is 6-connected

to pC2,l,k+l) in M, we have p(l,O,n+l)EC.

(ii) (Suppose y2 is also in the rightmost column of N 0(1,0,
Y2 p

n+l).) Thus Y2 =p(2,-1,0). Then since two components

of N PO,0,n+l1 cannot be merged by the rightmost plane

of NP(10,nl)'it follows that the rightmost column

of N ~ CS Hence p(l,O,n+2)cS or else p(0,2,
p (lO,n+l)-

n+l) could not be 6-adjacent to two components of

Np~lnl Furthermore, p(l,-l,n+l)ES or else p(1,0,

n+2) could not be 6-adjacent to two components of

p(2,O,n+1). Now, since y2 is 6-connected to p(0,O,n)

in R, it again follows as in (i) that y2 and p(1,0,n+l)

must be in opposite components of Ft. But {yl,p(1,0,

n+l)}cC . #

(iii) (Suppose y2  is in the rightmost column of

Np(O,O,n+l)*) Note that p(l,0,n+2)ES, or else

{p(l,1,n+2), p(2,0,n+2)}cS and a could not connect

YJto Y 2. Thus p(0,1,n+l)E'g since it cannot be 6-

adjacent to two components of Np(l,0,n+2)* Further-

more, p(0,1 ,n+1)ECi since p(0,l,n+l) and p(l,0,n+l)



m.st be in different components of Np(O,O,n+l)

or else p(1,1,n+l) could not be 6-adjacent to two

components of Np(OO,n+l)* Finally, p(0,1,n+2)ES

since otherwise p(0,l,n+l) could not be 6-connected

to p(l,0,n+2) in Np(l,0,n+2)* Hence, p(O,I,n+2)ECi

and y2#P(l,l,n+2). Thus, y2=p(l,-l,n+2). Now,

p(l,-l,n+l)ES, or else p(l,0,n+l) could not be 6-

connected to p(O,O,n+l) in N But since
p (O,O,n+l)'

p(0,I,n+2)ECi, {p(2,0,n+2), p(2,-l,n+2)}ca. However,

it then follows that p(l,0,n+2) is 6-adjacent to

only one component of N( 2 ,0,n+i)" (# from which (1)

follows.)

(2). (A* (n)={p(l,0,n)}, A* (n+l)={p(O,O,n+l)}). Con-
p,q p,q

sider Np(l,0,n)-Mn Note B1 Cc1 and B2LC2 where B1 and B2 are

the two components of Np(l,0,n)" From Lemma 5, if yES, y is

in the leftmost column of N 0(0,0,n+l), and y is 6-connected
p

to p(l,0,n) in Mn, then y is 6-connected to p(l,0,n) 
in NOi= - l' 0

n p(0,0,n+l)

UNp(I,0,n). Furthermore, from Lemma 2, it follows that B1

and B, cannot be merged in N(,0n+l)" Thus, M, where M=MnU-i

Np(0,0,n+l), has two components, Ci and C2 , each of which is

6-adjacent to every element of An+I . Furthermore, CliC and

C2 _C . Hence, as in (1), we can assume that a is a 6-path in

the two rightmost columns of N which is 6-adjacentp(l,0,n+l)

to YlcC and Y2 ECi where {yly 2}c the union of the rightmost

column of N~p 0n+l) and the rightmost column of N
o

p(OOn~l)p(1,0,n+l)"



However, by geometric syrmetry to Lemma 4, if either of Y,

or is in the righthand column of N1  then itis p(,n+l)'tn) in
-2is 6-connected to p(l,0,n) via a path in Np,,) (N 0,)

Thus, Np(l,0,n) merges two components of Np(1,0,n) in con-

tradiction to Lemma 3. #

(3). (A* (n)={p(l,O,n)}, A* (n+l)={p(0.O,n+l),
p 'q p "q -

p(l,0,n+l)}). As in (2) above, M, where M=MnUNp(O,O,n+l),

has two components, Cj and C , each of which is 6-adjacent

to every element of An+I. Hence, again we can assume a is

contained in the two rightmost columns of i How-p(l,0,n+l) "Hw

ever, we now have two components of Np(1,0,n) merged by a 6-

path in 9p(l,0,n+l)' which violates Lemma 2. #

(4). (A* (n)={(p(O,O,n), p(l,0,n)}). W.L.G., assume

p(l,0,n+l)ES. From either Lemma 2 or Lemma 3, we have that

-1
where M=MUN(,,n+) has two components, Cj and C each

of which is 6-adjacent to every element of An+I.* Hence, a is
contained in the two rightmost columns of NI Again

Np (i,0n+l) Agin

we then arrive at a contradiction to Lemma 2 as in (3) by con-

sideration of N p(l,0,n+l) UNp(l,0,n). This completes the proof.

-a--- - - - -



4. Conclusion

Theorem 1. If S is a connected collection of simple surface

points then S has exactly one cavity, and S is said to be a

simple closed surface.

Hence, we now have the above characterization of simple

closed surfaces which holds for both 6-connectivity and 26-

connectivity. Furthermore, this characterization is of minimal

computational cost in that only the smallest three-dimensional

neighborhoods (3x3x3) of the respective points need to be exa-

mined. This completes the study of (10) and [13].

T .. .. ... .... .
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